UNIT 4

PLANNING AND MACHINE LEARNING

4.1 Planning With State Space Search

The agent first generates a goal to achieve and then constructs a plan to achieve it from the Current state.

Problem Solving To Planning

Representation Using Problem Solving Approach

- \checkmark Forward search
- \checkmark Backward search
- \checkmark Heuristic search

Representation Using Planning Approach

- \checkmark STRIPS-standard research institute problem solver.
- \checkmark Representation for states and goals
- \checkmark Representation for plans
- \checkmark Situation space and plan space
- \checkmark Solutions

Why Planning?

Intelligent agents must operate in the world. They are not simply passive reasons (Knowledge Representation, reasoning under uncertainty) or problem solvers (Search), they must also act on the world.

We want intelligent agents to act in "intelligent ways". Taking purposeful actions, predicting the expected effect of such actions, composing actions together to achieve complex goals. E.g. if we have a robot we want robot to decide what to do; how to act to achieve our goals.

Planning Problem

How to change the world to suit our needs

Critical issue: we need to reason about what the world will be like after doing a few actions, not just what it is like now

CS6659-Artificial Intelligence **Page 1** and the Page 1

GOAL: Craig has coffee

CURRENTLY: robot in mailroom, has no coffee, coffee not made, Craig in office etc.

TO DO: goto lounge, make coffee

Partial Order Plan

- \triangleright A partially ordered collection of steps
	- o *Start step* has the initial state description and its effect
	- o *Finish step* has the goal description as its precondition
	- o *Causal links* from outcome of one step to precondition of another step
	- o *Temporal ordering* between pairs of steps
- \triangleright An open condition is a precondition of a step not yet causally linked
- \triangleright A plan is *complete* if every precondition is achieved
- \triangleright A precondition is *achieved* if it is the effect of an earlier step and no possibly intervening step undoes it

Partial Order Plan Algorithm

function POP(*initial, goal, operators*) returns plan $plan \leftarrow \text{MAKE-MINIMAL-PLAN}(initial, goal)$ loop do if SOLUTION? (plan) then return plan $S_{need}, c \leftarrow$ SELECT-SUBGOAL(*plan*) CHOOSE-OPERATOR($plan$, operators, S_{need} , c) RESOLVE-THREATS(plan) end function SELECT-SUBGOAL($plan$) returns S_{need} , c pick a plan step S_{need} from STEPS($plan$) with a precondition c that has not been achieved return S_{need} , c

procedure CHOOSE-OPERATOR(plan, operators, S_{need} , c) choose a step S_{add} from *operators* or STEPS(*plan*) that has c as an effect if there is no such step then fail add the causal link $S_{add} \stackrel{c}{\longrightarrow} S_{need}$ to LINKS(*plan*) add the ordering constraint $S_{add} \prec S_{need}$ to ORDERINGS(plan) if S_{add} is a newly added step from $operators$ then add S_{add} to STEPS($plan$) add $Start \prec S_{add} \prec Finish$ to ORDERINGS(plan) procedure RESOLVE-THREATS(plan) for each S_{thread} that threatens a link $S_i \stackrel{c}{\longrightarrow} S_i$ in LINKS(plan) do choose either Demotion: Add $S_{thread} \prec S_i$ to ORDERINGS(*plan*) *Promotion:* Add $S_i \prec S_{thread}$ to ORDERINGS(*plan*) if not CONSISTENT($plan$) then fail end

4.2 Stanford Research Institute Problem Solver (STRIPS)

STRIPS is a classical planning language, representing plan components as states, goals, and actions, allowing algorithms to parse the logical structure of the planning problem to provide a solution.

In STRIPS, state is represented as a [conjunction](http://en.wikipedia.org/wiki/Logical_conjunction) of positive literals. Positive literals may be a propositional literal (e.g., Big \land Tall) or a first-order literal (e.g., At(Billy, Desk)). The positive literals must be grounded – may not contain a variable (e.g., $At(x, Desk)$) – and must be function-free – may not invoke a function to calculate a value (e.g., At(Father(Billy), Desk)). Any state conditions that are not mentioned are assumed false.

The goal is also represented as a conjunction of positive, ground literals. A state satisfies a goal if the state contains all of the conjuncted literals in the goal; e.g., Stacked ^ Ordered ^ Purchased satisfies Ordered \wedge Stacked.

Actions (or operators) are defined by action schemas, each consisting of three parts:

- The action name and any parameters.
- Preconditions which must hold before the action can be executed. Preconditions are represented as a conjunction of function-free, positive literals. Any variables in a precondition must appear in the action"s parameter list.
- Effects which describe how the state of the environment changes when the action is executed. Effects are represented as a conjunction of function-free literals. Any

variables in a precondition must appear in the action"s parameter list. Any world state not explicitly impacted by the action schema"s effect is assumed to remain unchanged.

The following, simple action schema describes the action of moving a box from location x to location y:

Action: *MoveBox*(*x*, *y*) Precond: *BoxAt*(*x*) Effect: $Box(y)$, $\neg BoxAt(x)$

If an action is applied, but the current state of the system does not meet the necessary preconditions, then the action has no effect. But if an action is successfully applied, then any positive literals, in the effect, are added to the current state of the world; correspondingly, any negative literals, in the effect, result in the removal of the corresponding positive literals from the state of the world.

For example, in the action schema above, the effect would result in the proposition BoxAt(*y*) being added to the known state of the world, while BoxAt(*x*) would be *removed* from the known state of the world. (Recall that state only includes positive literals, so a negation effect results in the *removal* of positive literals.) Note also that positive effects can not get duplicated in state; likewise, a negative of a proposition that is not currently in state is simply ignored. For example, if *Open*(*x*) was not previously part of the state, \neg *Open*(*x*) would have no effect.

A STRIPS problem includes the complete (but relevant) initial state of the world, the goal state(s), and action schemas. A STRIPS algorithm should then be able to accept such a problem, returning a solution. The solution is simply an action sequence that, when applied to the initial state, results in a state which satisfies the goal.

4.2.1 STRIPS Planning Algorithm

As previously referenced, STRIPS began as an automated planning algorithm and has doublemeaning to describe the language (described above) used to provide input to that algorithm. While the algorithm does not scale well to real-world problems, it, like the language, serves as a foundational starting point to developing and understanding more powerful automated planning algorithms. The STRIPS algorithm [3] is found below, followed by a brief commentary:

```
STRIPS(A, s, g)p =empty plan
loop…
if s satisfies g then return p
a = [an applicable action in A, relevant for g]
if a = null, then return failure
p' = STRIPS(A, s, precond(a))
if p' = failure, then return failure
s =apply p' to s
```
 $s =$ apply *a* to *s* $p = p + p' + a$

In the above STRIPS algorithm, *A* represents all of the possible, grounded actions (i.e., action schemas with variables replaced with values), while *s* is the current state, and *g* is the goal state.

Critically important to note is that this algorithm is a *backward-search* algorithm. In other words, the goal state of the planning problem is fed into the algorithm as *s*, while the initial state of the planning problem is provided as *g*. The returned solution, if any, simply needs to be reversed to provide the solution to the planning problem. Simply put, it works backwards from the goal to figure out a logical path to get there.

4.3 Explanation

Most expert systems have explanation facilities that allow the user to ask questions- why and how it reached some conclusion

The questions are answered by referring to the system goals, the rules being used, and existing problem solving. The rules typically reflect empirical or "compiled" knowledge. They are codes of an expert"s rule of thumb, not the expert"s deeper understanding.

Example:

Dialog with an expert system designed to give advice on car problems.

User

Note: The rule gives the correct advice for a flooded car. And knows the questions to be ask to determine if the car is flooded, but it does not contain the knowledge of what a flooded car is and why waiting will help.

Types of Explanation

There are four types of explanations commonly used in expert systems.

- \checkmark Rule trace reports on the progress of a consultation;
- \checkmark Explanation of how the system reached to the give conclusion;
- \checkmark Explanation of why the system did not give any conclusion.
- \checkmark Explanation of why the system is asking a question;

4.4 Learning

Machine Learning

- Like human learning from past experiences,a computer does not have "experiences".
- A computer system learns from data, which represent some "past experiences" of an application domain.
- \triangleright Objective of machine learning : learn a target function that can be used to predict the values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low risk.
- The task is commonly called: **Supervised learning, classification, or inductive learning**

Supervised Learning

Supervised learning is a machine learning technique for learning a function from training data. The training data consist of pairs of input objects (typically vectors), and desired outputs. The output of the function can be a continuous value (called regression), or can predict a class label of the input object (called classification). The task of the supervised learner is to predict the value of the function for any valid input object after having seen a number of training examples (i.e. pairs of input and target output). To achieve this, the learner has to generalize from the presented data to unseen situations in a "reasonable" way.

Another term for supervised learning is classification. Classifier performance depend greatly on the characteristics of the data to be classified. There is no single classifier that works best on all given problems. Determining a suitable classifier for a given problem is however still more an art than a science. The most widely used classifiers are the Neural Network (Multi-layer Perceptron), Support Vector Machines, k-Nearest Neighbors, Gaussian Mixture Model, Gaussian, Naive Bayes, Decision Tree and RBF classifiers.

Supervised learning process: two steps

- **Learning** (training): Learn a model using the training data
- **Testing:** Test the model using unseen test data to assess the model accuracy

Supervised vs. unsupervised Learning

Supervised learning:

 classification is seen as supervised learning from examples.

- \checkmark **Supervision**: The data (observations, measurements, etc.) are labeled with predefined classes. It is like that a "teacher" gives the classes (supervision).
- **Test data** are classified into these classes too.

Unsupervised learning (clustering)

- \checkmark Class labels of the data are unknown
- \checkmark Given a set of data, the task is to establish the existence of classes or clusters in the data

Decision Tree

- \triangleright A decision tree takes as input an object or situation described by a set of attributes and returns a "decision" – the predicted output value for the input.
- \triangleright A decision tree reaches its decision by performing a sequence of tests.

Example : "HOW TO" manuals (for car repair)

A decision tree reaches its decision by performing a sequence of tests. Each internal node in the tree corresponds to a test of the value of one of the properties, and the branches from the node are labeled with the possible values of the test. Each leaf node in the tree specifies the value to be returned if that leaf is reached. The decision tree representation seems to be very natural for humans; indeed, many "How To" manuals (e.g., for car repair) are written entirely as a single decision tree stretching over hundreds of pages.

A somewhat simpler example is provided by the problem of whether to wait for a table at a restaurant. The aim here is to learn a definition for the goal predicate Will Wait. In setting this up as a learning problem, we first have to state what attributes are available to describe examples in the domain. we will see how to automate this task; for now, let's suppose we decide on the following list of attributes:

- 1. Alternate: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. Type: the kind of restaurant (French, Italian, Thai, or burger).
- 10. Wait Estimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Decision tree induction from examples

An example for a Boolean decision tree consists of a vector of' input attributes, X, and a single Boolean output value y. A set of examples $(X1,Y1)$..., $(X2, y2)$ is shown in Figure. The positive examples are the ones in which the goal *Will Wait* is true (XI, *X3,* . . .); the negative examples are the ones in which it is false (X2, *X5,* . . .). The complete set of examples is called the **training set.**

Decision Tree Algorithm

The basic idea behind the Decision-Tree-Learning-Algorithm is to test the most important attribute first. By "most important," we mean the one that makes the most difference to the classification of an example. That way, we hope to get to the correct classification with a small number of tests, meaning that all paths in the tree will be short and the tree as a whole will be small.

Reinforcement Learning

- \triangleright Learning what to do to maximize reward
	- \checkmark Learner is not given training
	- \checkmark Only feedback is in terms of reward
	- \checkmark Try things out and see what the reward is
- \triangleright Different from Supervised Learning
	- \checkmark Teacher gives training examples

Examples

- Robotics: Quadruped Gait Control, Ball Acquisition (Robocup)
- \triangleright Control: Helicopters
- Operations Research: Pricing, Routing, Scheduling
- Game Playing: Backgammon, Solitaire, Chess, Checkers
- Human Computer Interaction: Spoken Dialogue Systems
- > Economics/Finance: Trading

Markov decision process VS Reinforcement Learning

 \triangleright Markov decision process

- \checkmark Set of state S, set of actions A
- \checkmark Transition probabilities to next states T(s, a, a')
- \checkmark Reward functions R(s)
- \triangleright RL is based on MDPs, but
	- \checkmark Transition model is not known
	- \checkmark Reward model is not known
- \triangleright MDP computes an optimal policy
- \triangleright RL learns an optimal policy

Types of Reinforcement Learning

- \triangleright Passive Vs Active
	- \checkmark Passive: Agent executes a fixed policy and evaluates it
	- \checkmark Active: Agents updates policy as it learns
- \triangleright Model based Vs Model free
- \triangleright Model-based: Learn transition and reward model, use it to get optimal policy
- \triangleright Model free: Derive optimal policy without learning the model

Passive Learning

- \triangleright Evaluate how good a policy π is
- Eearn the utility $U^{\pi}(s)$ of each state
- \triangleright Same as policy evaluation for known transition & reward models

Agent executes a sequence of trials:

$$
(1, 1) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow (2, 3) \rightarrow (3, 3) \rightarrow (4, 3)_{+1}
$$

$$
(1, 1) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow (2, 3) \rightarrow (3, 3) \rightarrow (3, 2) \rightarrow (3, 3) \rightarrow (4, 3)_{+1}
$$

$$
(1, 1) \rightarrow (2, 1) \rightarrow (3, 1) \rightarrow (3, 2) \rightarrow (4, 2)_{-1}
$$

Goal is to learn the expected utility $U_{\pi}(s)$

$$
U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi, s_0 = s\right]
$$

Direct Utility Estimation

- \triangleright Reduction to inductive learning
	- \checkmark Compute the empirical value of each state
	- \checkmark Each trial gives a sample value
	- \checkmark Estimate the utility based on the sample values
- \triangleright Example: First trial gives
	- \checkmark State (1,1): A sample of reward 0.72
	- \checkmark State (1,2): Two samples of reward 0.76 and 0.84
	- \checkmark State (1,3): Two samples of reward 0.80 and 0.88
- \triangleright Estimate can be a running average of sample values
- Example: $U(1, 1) = 0.72$, $U(1, 2) = 0.80$, $U(1, 3) = 0.84$, ...
- \triangleright Ignores a very important source of information

 \triangleright The utility of states satisfy the Bellman equations

$$
U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U^{\pi}(s')
$$

- \triangleright Search is in a hypothesis space for U much larger than needed
- \triangleright Convergence is very slow
- \triangleright Make use of Bellman equations to get $U^{\pi}(s)$
- \triangleright Need to estimate T(s, $\pi(s)$, s') and R(s) from trials
- \triangleright Plug-in learnt transition and reward in the Bellman equations
- Solving for U^{π} : System of n linear equations
- \triangleright Estimates of T and R keep changing
- \triangleright Make use of modified policy iteration idea
	- \checkmark Run few rounds of value iteration
	- \checkmark Initialize value iteration from previous utilities
	- \checkmark Converges fast since T and R changes are small
- \triangleright ADP is a standard baseline to test 'smarter' ideas
- \triangleright ADP is inefficient if state space is large
	- \checkmark Has to solve a linear system in the size of the state space
	- \sim Backgammon: 10⁵⁰ linear equations in 10⁵⁰ unknowns

Temporal Difference Learning

- \triangleright Best of both worlds
	- \checkmark Only update states that are directly affected
	- \checkmark Approximately satisfy the Bellman equations
	- \checkmark Example:

$$
(1, 1) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow (2, 3) \rightarrow (3, 3) \rightarrow (4, 3)_{+1}
$$

 $(1, 1) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow (2, 3) \rightarrow (3, 3) \rightarrow (3, 2) \rightarrow (3, 3) \rightarrow (4, 3)_{+1}$

 $(1, 1) \rightarrow (2, 1) \rightarrow (3, 1) \rightarrow (3, 2) \rightarrow (4, 2)_{-1}$

- After the first trial, $U(1, 3) = 0.84$, $U(2, 3) = 0.92$
- Consider the transition $(1, 3) \rightarrow (2, 3)$ in the second trial
- If deterministic, then $U(1, 3) = -0.04 + U(2, 3)$
- How to account for probabilistic transitions (without a model)
- \triangleright TD chooses a middle ground

 $U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s'))$

- \triangleright Temporal difference (TD) equation, α is the learning rate
- \triangleright The TD equation

 $U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$

- \triangleright TD applies a correction to approach the Bellman equations
	- \checkmark The update for s' will occur T(s, $\pi(s)$, s') fraction of the time
	- \checkmark The correction happens proportional to the probabilities
	- \checkmark Over trials, the correction is same as the expectation
- \triangleright Learning rate α determines convergence to true utility
	- \checkmark Decrease α_s proportional to the number of state visits
	- \checkmark Convergence is guaranteed if

$$
\sum_{m=1}^{\infty} \alpha_s(m) = \infty \qquad \sum_{m=1}^{\infty} \alpha_s^2(m) < \infty
$$

- \checkmark Decay α_s (m) = 1/m satisfies the condition
- \triangleright TD is model free

TD Vs ADP

- \triangleright TD is mode free as opposed to ADP which is model based
- \triangleright TD updates observed successor rather than all successors
- \triangleright The difference disappears with large number of trials
- \triangleright TD is slower in convergence, but much simpler computation per observation

Active Learning

- \triangleright Agent updates policy as it learns
- \triangleright Goal is to learn the optimal policy
- \triangleright Learning using the passive ADP agent
	- \checkmark Estimate the model R(s), T(s, a, s') from observations
	- \checkmark The optimal utility and action satisfies

 $U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s')U(s')$

- \checkmark Solve using value iteration or policy iteration
- \triangleright Agent has "optimal" action
- \triangleright Simply execute the "optimal" action

Exploitation vs Exploration

- \triangleright The passive approach gives a greedy agent
- \triangleright Exactly executes the recipe for solving MDPs
- \triangleright Rarely converges to the optimal utility and policy
	- \checkmark The learned model is different from the true environment
- > Trade-off
	- \checkmark Exploitation: Maximize rewards using current estimates
	- \checkmark Agent stops learning and starts executing policy
	- \checkmark Exploration: Maximize long term rewards
	- \checkmark Agent keeps learning by trying out new things
- \triangleright Pure Exploitation
- \checkmark Mostly gets stuck in bad policies
- \triangleright Pure Exploration
	- \checkmark Gets better models by learning
	- \checkmark Small rewards due to exploration
- \triangleright The multi-armed bandit setting
	- \checkmark A slot machine has one lever, a one-armed bandit
	- \checkmark n-armed bandit has n levers
- \triangleright Which arm to pull?
	- \checkmark Exploit: The one with the best pay-off so far
	- \checkmark Explore: The one that has not been tried

Exploration

- \triangleright Greedy in the limit of infinite exploration (GLIE)
	- \checkmark Reasonable schemes for trade off
- \triangleright Revisiting the greedy ADP approach
	- \checkmark Agent must try each action infinitely often
	- \checkmark Rules out chance of missing a good action
	- \checkmark Eventually must become greedy to get rewards
- \triangleright Simple GLIE
	- \checkmark Choose random action 1/t fraction of the time
	- \checkmark Use greedy policy otherwise
- \triangleright Converges to the optimal policy
- \triangleright Convergence is very slow

Exploration Function

- \triangleright A smarter GLIE
	- \checkmark Give higher weights to actions not tried very often
	- \checkmark Give lower weights to low utility actions
- Alter Bellman equations using optimistic utilities $U^+(s)$

$$
U^+(s) = R(s) + \gamma \max_{a} f\left(\sum_{s'} T(s, a, s') U^+(s'), N(a, s)\right)
$$

- \triangleright The exploration function f (u, n)
	- \checkmark Should increase with expected utility u
	- \checkmark Should decrease with number of tries n
- \triangleright A simple exploration function

$$
f(u,n) = \begin{cases} R^+, & \text{if } n < N \\ u, & \text{otherwise} \end{cases}
$$

- \triangleright Actions towards unexplored regions are encouraged
- \triangleright Fast convergence to almost optimal policy in practice

Q-Learning

- \triangleright Exploration function gives a active ADP agent
- \triangleright A corresponding TD agent can be constructed
	- \checkmark Surprisingly, the TD update can remain the same
	- \checkmark Converges to the optimal policy as active ADP
	- \checkmark Slower than ADP in practice
- \triangleright Q-learning learns an action-value function Q(a; s)
	- \checkmark Utility values U(s) = max_a Q(a; s)
- A model-free TD method
	- \checkmark No model for learning or action selection

 \triangleright Constraint equations for Q-values at equilibrium

$$
Q(a,s) = R(s) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(a',s')
$$

- \triangleright Can be updated using a model for T(s; a; s')
- \triangleright The TD Q-learning does not require a model

$$
Q(a,s) \leftarrow Q(a,s) + \alpha(R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s))
$$

- \triangleright Calculated whenever a in s leads to s'
- The next action $a_{\text{next}} = \text{argmax}_a$, $f(Q(a^*; s^*)$; $N(s^*; a^*)$)
- \triangleright Q-learning is slower than ADP
- > Trade-o: Model-free vs knowledge-based methods

PART- A

- 1. What are the components of planning system?
- 2. What is planning?
- 3. What is nonlinear plan?
- 4. List out the 3 types of machine learning?
- 5. What is Reinforcement Learning?
- 6. What do you mean by goal stack planning?
- 7. Define machine learning.
- 8. What are the types of Reinforcement Learning.

PART B

1. Briefly explain the advanced plan generation systems.

- 2. Explain Machine Learning.
- 3. Explain STRIPS.
- 4. Explain Reinforcement Learning.
- 5. Briefly explain Partial Order Plan.
- 6. Explain in detail about various Machine learning methods.