
CS6659-Artificial Intelligence Page 1

UNIT 4

PLANNING AND MACHINE LEARNING

4.1 Planning With State Space Search

 The agent first generates a goal to achieve and then constructs a plan to achieve it from

the Current state.

Problem Solving To Planning

Representation Using Problem Solving Approach

 Forward search

 Backward search

 Heuristic search

Representation Using Planning Approach

 STRIPS-standard research institute problem solver.

 Representation for states and goals

 Representation for plans

 Situation space and plan space

 Solutions

Why Planning?

Intelligent agents must operate in the world. They are not simply passive reasons (Knowledge

Representation, reasoning under uncertainty) or problem solvers (Search), they must also act on

the world.

We want intelligent agents to act in “intelligent ways”. Taking purposeful actions, predicting the

expected effect of such actions, composing actions together to achieve complex goals. E.g. if we

have a robot we want robot to decide what to do; how to act to achieve our goals.

Planning Problem

How to change the world to suit our needs

Critical issue: we need to reason about what the world will be like after doing a few actions, not

just what it is like now

CS6659-Artificial Intelligence Page 2

GOAL: Craig has coffee

CURRENTLY: robot in mailroom, has no coffee, coffee not made, Craig in office etc.

TO DO: goto lounge, make coffee

Partial Order Plan

 A partially ordered collection of steps

o Start step has the initial state description and its effect

o Finish step has the goal description as its precondition

o Causal links from outcome of one step to precondition of another step

o Temporal ordering between pairs of steps

 An open condition is a precondition of a step not yet causally linked

 A plan is complete if every precondition is achieved

 A precondition is achieved if it is the effect of an earlier step and no possibly intervening

step undoes it

Start

Finish

Right Sock

Right Shoe

Left Sock

Left Shoe

CS6659-Artificial Intelligence Page 3

Partial Order Plan Algorithm

CS6659-Artificial Intelligence Page 4

4.2 Stanford Research Institute Problem Solver (STRIPS)

STRIPS is a classical planning language, representing plan components as states, goals, and

actions, allowing algorithms to parse the logical structure of the planning problem to provide a

solution.

In STRIPS, state is represented as a conjunction of positive literals. Positive literals may be a

propositional literal (e.g., Big ^ Tall) or a first-order literal (e.g., At(Billy, Desk)). The positive

literals must be grounded – may not contain a variable (e.g., At(x, Desk)) – and must be

function-free – may not invoke a function to calculate a value (e.g., At(Father(Billy), Desk)).

Any state conditions that are not mentioned are assumed false.

The goal is also represented as a conjunction of positive, ground literals. A state satisfies a goal

if the state contains all of the conjuncted literals in the goal; e.g., Stacked ^ Ordered ^ Purchased

satisfies Ordered ^ Stacked.

Actions (or operators) are defined by action schemas, each consisting of three parts:

 The action name and any parameters.

 Preconditions which must hold before the action can be executed. Preconditions are

represented as a conjunction of function-free, positive literals. Any variables in a

precondition must appear in the action‟s parameter list.

 Effects which describe how the state of the environment changes when the action is

executed. Effects are represented as a conjunction of function-free literals. Any

http://en.wikipedia.org/wiki/Logical_conjunction

CS6659-Artificial Intelligence Page 5

variables in a precondition must appear in the action‟s parameter list. Any world state

not explicitly impacted by the action schema‟s effect is assumed to remain unchanged.

The following, simple action schema describes the action of moving a box from location x to

location y:

Action: MoveBox(x, y)

Precond: BoxAt(x)

Effect: BoxAt(y), ¬ BoxAt(x)

If an action is applied, but the current state of the system does not meet the necessary

preconditions, then the action has no effect. But if an action is successfully applied, then any

positive literals, in the effect, are added to the current state of the world; correspondingly, any

negative literals, in the effect, result in the removal of the corresponding positive literals from the

state of the world.

For example, in the action schema above, the effect would result in the proposition BoxAt(y)

being added to the known state of the world, while BoxAt(x) would be removed from the known

state of the world. (Recall that state only includes positive literals, so a negation effect results in

the removal of positive literals.) Note also that positive effects can not get duplicated in state;

likewise, a negative of a proposition that is not currently in state is simply ignored. For example,

if Open(x) was not previously part of the state, ¬ Open(x) would have no effect.

A STRIPS problem includes the complete (but relevant) initial state of the world, the goal

state(s), and action schemas. A STRIPS algorithm should then be able to accept such a problem,

returning a solution. The solution is simply an action sequence that, when applied to the initial

state, results in a state which satisfies the goal.

4.2.1 STRIPS Planning Algorithm

As previously referenced, STRIPS began as an automated planning algorithm and has double-

meaning to describe the language (described above) used to provide input to that algorithm.

While the algorithm does not scale well to real-world problems, it, like the language, serves as a

foundational starting point to developing and understanding more powerful automated planning

algorithms. The STRIPS algorithm [3] is found below, followed by a brief commentary:

STRIPS(A, s, g)

p = empty plan

loop…

if s satisfies g then return p

a = [an applicable action in A, relevant for g]

if a = null, then return failure

p’ = STRIPS(A, s, precond(a))

if p’ = failure, then return failure

s = apply p’ to s

CS6659-Artificial Intelligence Page 6

s = apply a to s

p = p + p’ + a

In the above STRIPS algorithm, A represents all of the possible, grounded actions (i.e., action

schemas with variables replaced with values), while s is the current state, and g is the goal state.

Critically important to note is that this algorithm is a backward-search algorithm. In other

words, the goal state of the planning problem is fed into the algorithm as s, while the initial state

of the planning problem is provided as g. The returned solution, if any, simply needs to be

reversed to provide the solution to the planning problem. Simply put, it works backwards from

the goal to figure out a logical path to get there.

4.3 Explanation

Most expert systems have explanation facilities that allow the user to ask questions- why and

how it reached some conclusion

The questions are answered by referring to the system goals, the rules being used, and existing

problem solving. The rules typically reflect empirical or “compiled” knowledge. They are codes

of an expert‟s rule of thumb, not the expert‟s deeper understanding.

Example:

Dialog with an expert system designed to give advice on car problems.

System Does the car start?

User No.

System Does the engine turn over?

User yes

System Do you smell gas?

User yes

System Recommendation-wait 5 minutes and try again.

User Why?

System I used the rule:

 If not start, and engine_turn_over, and smell_gas

 Then recommendation is „wait 5 minutes and try again‟

CS6659-Artificial Intelligence Page 7

User

Note: The rule gives the correct advice for a flooded car. And knows the questions to be ask to

determine if the car is flooded, but it does not contain the knowledge of what a flooded car is and

why waiting will help.

Types of Explanation

There are four types of explanations commonly used in expert systems.

 Rule trace reports on the progress of a consultation;

 Explanation of how the system reached to the give conclusion;

 Explanation of why the system did not give any conclusion.

 Explanation of why the system is asking a question;

4.4 Learning

Machine Learning

 Like human learning from past experiences,a computer does not have “experiences”.

 A computer system learns from data, which represent some “past experiences” of an

application domain.

 Objective of machine learning : learn a target function that can be used to predict the

values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low

risk.

 The task is commonly called: Supervised learning, classification, or inductive learning

Supervised Learning

Supervised learning is a machine learning technique for learning a function from training data.

The training data consist of pairs of input objects (typically vectors), and desired outputs. The

output of the function can be a continuous value (called regression), or can predict a class label

of the input object (called classification). The task of the supervised learner is to predict the

value of the function for any valid input object after having seen a number of training examples

(i.e. pairs of input and target output). To achieve this, the learner has to generalize from the

presented data to unseen situations in a "reasonable" way.

CS6659-Artificial Intelligence Page 8

Another term for supervised learning is classification. Classifier performance depend greatly on

the characteristics of the data to be classified. There is no single classifier that works best on all

given problems. Determining a suitable classifier for a given problem is however still more an art

than a science. The most widely used classifiers are the Neural Network (Multi-layer

Perceptron), Support Vector Machines, k-Nearest Neighbors, Gaussian Mixture Model,

Gaussian, Naive Bayes, Decision Tree and RBF classifiers.

 Supervised learning process: two steps

 Learning (training): Learn a model using the training data

 Testing: Test the model using unseen test data to assess the model accuracy

Supervised vs. unsupervised Learning

 Supervised learning:

 classification is seen as supervised learning from examples.

 Supervision: The data (observations, measurements, etc.) are labeled with pre-

defined classes. It is like that a “teacher” gives the classes (supervision).

 Test data are classified into these classes too.

 Unsupervised learning (clustering)

 Class labels of the data are unknown

 Given a set of data, the task is to establish the existence of classes or clusters in

the data

Decision Tree

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
Accuracy

CS6659-Artificial Intelligence Page 9

 A decision tree takes as input an object or situation described by a set of attributes and

returns a “decision” – the predicted output value for the input.

 A decision tree reaches its decision by performing a sequence of tests.

Example : “HOW TO” manuals (for car repair)

A decision tree reaches its decision by performing a sequence of tests. Each internal node in the

tree corresponds to a test of the value of one of the properties, and the branches from the node

are labeled with the possible values of the test. Each leaf node in the tree specifies the value to be

returned if that leaf is reached. The decision tree representation seems to be very natural for

humans; indeed, many "How To" manuals (e.g., for car repair) are written entirely as a single

decision tree stretching over hundreds of pages.

A somewhat simpler example is provided by the problem of whether to wait for a table at a

restaurant. The aim here is to learn a definition for the goal predicate Will Wait. In setting this up

as a learning problem, we first have to state what attributes are available to describe examples in

the domain. we will see how to automate this task; for now, let's suppose we decide on the

following list of attributes:

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$$).

7. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai, or burger).

10. Wait Estimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

CS6659-Artificial Intelligence Page 10

Decision tree induction from examples

An example for a Boolean decision tree consists of a vector of' input attributes, X, and a single

Boolean output value y. A set of examples (X1,Y1) . . . , (X2, y2) is shown in Figure. The

positive examples are the ones in which the goal Will Wait is true (XI, X3, . . .); the negative

examples are the ones in which it is false (X2, X5, . . .). The complete set of examples is called

the training set.

Decision Tree Algorithm

The basic idea behind the Decision-Tree-Learning-Algorithm is to test the most important

attribute first. By "most important," we mean the one that makes the most difference to the

classification of an example. That way, we hope to get to the correct classification with a small

number of tests, meaning that all paths in the tree will be short and the tree as a whole will be

small.

CS6659-Artificial Intelligence Page 11

Reinforcement Learning

 Learning what to do to maximize reward

 Learner is not given training

 Only feedback is in terms of reward

 Try things out and see what the reward is

 Different from Supervised Learning

 Teacher gives training examples

Examples

 Robotics: Quadruped Gait Control, Ball Acquisition (Robocup)

 Control: Helicopters

 Operations Research: Pricing, Routing, Scheduling

 Game Playing: Backgammon, Solitaire, Chess, Checkers

 Human Computer Interaction: Spoken Dialogue Systems

 Economics/Finance: Trading

Markov decision process VS Reinforcement Learning

 Markov decision process

CS6659-Artificial Intelligence Page 12

 Set of state S, set of actions A

 Transition probabilities to next states T(s, a, a‟)

 Reward functions R(s)

 RL is based on MDPs, but

 Transition model is not known

 Reward model is not known

 MDP computes an optimal policy

 RL learns an optimal policy

Types of Reinforcement Learning

 Passive Vs Active

 Passive: Agent executes a fixed policy and evaluates it

 Active: Agents updates policy as it learns

 Model based Vs Model free

 Model-based: Learn transition and reward model, use it to get optimal policy

 Model free: Derive optimal policy without learning the model

Passive Learning

 Evaluate how good a policy π is

 Learn the utility U
π
(s) of each state

 Same as policy evaluation for known transition & reward models

CS6659-Artificial Intelligence Page 13

Agent executes a sequence of trials:

(1, 1) → (1, 2) → (1, 3) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (4, 3)+1

(1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (3, 2) → (3, 3) → (4, 3)+1

(1, 1) → (2, 1) → (3, 1) → (3, 2) → (4, 2)−1

Goal is to learn the expected utility Uπ(s)

Direct Utility Estimation

 Reduction to inductive learning

 Compute the empirical value of each state

 Each trial gives a sample value

 Estimate the utility based on the sample values

 Example: First trial gives

 State (1,1): A sample of reward 0.72

 State (1,2): Two samples of reward 0.76 and 0.84

 State (1,3): Two samples of reward 0.80 and 0.88

 Estimate can be a running average of sample values

 Example: U(1, 1) = 0.72,U(1, 2) = 0.80,U(1, 3) = 0.84, . . .

 Ignores a very important source of information

CS6659-Artificial Intelligence Page 14

 The utility of states satisfy the Bellman equations

 Search is in a hypothesis space for U much larger than needed

 Convergence is very slow

 Make use of Bellman equations to get U
π
(s)

 Need to estimate T(s, π(s), s‟) and R(s) from trials

 Plug-in learnt transition and reward in the Bellman equations

 Solving for U
π
: System of n linear equations

 Estimates of T and R keep changing

 Make use of modified policy iteration idea

 Run few rounds of value iteration

 Initialize value iteration from previous utilities

 Converges fast since T and R changes are small

 ADP is a standard baseline to test „smarter‟ ideas

 ADP is inefficient if state space is large

 Has to solve a linear system in the size of the state space

 Backgammon: 10
50

 linear equations in 10
50

 unknowns

Temporal Difference Learning

 Best of both worlds

 Only update states that are directly affected

 Approximately satisfy the Bellman equations

 Example:

(1, 1) → (1, 2) → (1, 3) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (4, 3)+1

(1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (3, 2) → (3, 3) → (4, 3)+1

CS6659-Artificial Intelligence Page 15

(1, 1) → (2, 1) → (3, 1) → (3, 2) → (4, 2)−1

 After the first trial, U(1, 3) = 0.84,U(2, 3) = 0.92

 Consider the transition (1, 3) → (2, 3) in the second trial

 If deterministic, then U(1, 3) = −0.04 + U(2, 3)

 How to account for probabilistic transitions (without a model)

 TD chooses a middle ground

 Temporal difference (TD) equation, α is the learning rate

 The TD equation

 TD applies a correction to approach the Bellman equations

 The update for s‟ will occur T(s, π(s), s‟) fraction of the time

 The correction happens proportional to the probabilities

 Over trials, the correction is same as the expectation

 Learning rate α determines convergence to true utility

 Decrease αs proportional to the number of state visits

 Convergence is guaranteed if

 Decay αs (m) = 1/m satisfies the condition

 TD is model free

TD Vs ADP

 TD is mode free as opposed to ADP which is model based

 TD updates observed successor rather than all successors

CS6659-Artificial Intelligence Page 16

 The difference disappears with large number of trials

 TD is slower in convergence, but much simpler computation per observation

Active Learning

 Agent updates policy as it learns

 Goal is to learn the optimal policy

 Learning using the passive ADP agent

 Estimate the model R(s),T(s, a, s‟) from observations

 The optimal utility and action satisfies

 Solve using value iteration or policy iteration

 Agent has “optimal” action

 Simply execute the “optimal” action

Exploitation vs Exploration

 The passive approach gives a greedy agent

 Exactly executes the recipe for solving MDPs

 Rarely converges to the optimal utility and policy

 The learned model is different from the true environment

 Trade-off

 Exploitation: Maximize rewards using current estimates

 Agent stops learning and starts executing policy

 Exploration: Maximize long term rewards

 Agent keeps learning by trying out new things

 Pure Exploitation

CS6659-Artificial Intelligence Page 17

 Mostly gets stuck in bad policies

 Pure Exploration

 Gets better models by learning

 Small rewards due to exploration

 The multi-armed bandit setting

 A slot machine has one lever, a one-armed bandit

 n-armed bandit has n levers

 Which arm to pull?

 Exploit: The one with the best pay-off so far

 Explore: The one that has not been tried

Exploration

 Greedy in the limit of infinite exploration (GLIE)

 Reasonable schemes for trade off

 Revisiting the greedy ADP approach

 Agent must try each action infinitely often

 Rules out chance of missing a good action

 Eventually must become greedy to get rewards

 Simple GLIE

 Choose random action 1/t fraction of the time

 Use greedy policy otherwise

 Converges to the optimal policy

 Convergence is very slow

CS6659-Artificial Intelligence Page 18

Exploration Function

 A smarter GLIE

 Give higher weights to actions not tried very often

 Give lower weights to low utility actions

 Alter Bellman equations using optimistic utilities U
+
(s)

 The exploration function f (u, n)

 Should increase with expected utility u

 Should decrease with number of tries n

 A simple exploration function

 Actions towards unexplored regions are encouraged

 Fast convergence to almost optimal policy in practice

Q-Learning

 Exploration function gives a active ADP agent

 A corresponding TD agent can be constructed

 Surprisingly, the TD update can remain the same

 Converges to the optimal policy as active ADP

 Slower than ADP in practice

 Q-learning learns an action-value function Q(a; s)

 Utility values U(s) = maxa Q(a; s)

 A model-free TD method

 No model for learning or action selection

CS6659-Artificial Intelligence Page 19

 Constraint equations for Q-values at equilibrium

 Can be updated using a model for T(s; a; s‟)

 The TD Q-learning does not require a model

 Calculated whenever a in s leads to s‟

 The next action anext = argmaxa‟ f (Q(a‟; s‟);N(s‟; a‟))

 Q-learning is slower than ADP

 Trade-o: Model-free vs knowledge-based methods

PART- A

1. What are the components of planning system?

2. What is planning?

3. What is nonlinear plan?

4. List out the 3 types of machine learning?

5. What is Reinforcement Learning?

6. What do you mean by goal stack planning?

7. Define machine learning.

8. What are the types of Reinforcement Learning.

PART B

1. Briefly explain the advanced plan generation systems.

CS6659-Artificial Intelligence Page 20

2. Explain Machine Learning.

3. Explain STRIPS.

4. Explain Reinforcement Learning.

5. Briefly explain Partial Order Plan.

6. Explain in detail about various Machine learning methods.

