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UNIT 4 

PLANNING AND MACHINE LEARNING 

4.1 Planning With State Space Search 

 The agent first generates a goal to achieve and then constructs a plan to achieve it from 

the Current state. 

Problem Solving To Planning 

Representation Using Problem Solving Approach 

 Forward search 

 Backward search 

 Heuristic search 

Representation Using Planning Approach 

 STRIPS-standard research institute problem solver. 

 Representation for states and goals 

 Representation for plans 

 Situation space and plan space 

 Solutions 

Why Planning? 

Intelligent agents must operate in the world. They are not simply passive reasons (Knowledge 

Representation, reasoning under uncertainty) or problem solvers (Search), they must also act on 

the world. 

We want intelligent agents to act in “intelligent ways”. Taking purposeful actions, predicting the 

expected effect of such actions, composing actions together to achieve complex goals. E.g. if we 

have a robot we want robot to decide what to do; how to act to achieve our goals. 

Planning Problem 

How to change the world to suit our needs 

Critical issue: we need to reason about what the world will be like after doing a few actions, not 

just what it is like now 
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GOAL: Craig has coffee 

CURRENTLY: robot in mailroom, has no coffee, coffee not made, Craig in office etc. 

TO DO: goto lounge, make coffee 

Partial Order Plan 

 A partially ordered collection of steps 

o Start step has the initial state description and its effect 

o Finish step has the goal description as its precondition 

o Causal links from outcome of one step to precondition of another step 

o Temporal ordering between pairs of steps 

 An open condition is a precondition of a step not yet causally linked 

 A plan is complete if every precondition is achieved 

 A precondition is achieved if it is the effect of an earlier step and no possibly intervening 

step undoes it 

   

 

 

 

Start 

Finish 

Right Sock 

Right Shoe 

Left Sock 

Left Shoe 
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Partial Order Plan Algorithm 
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4.2 Stanford Research Institute Problem Solver (STRIPS) 

STRIPS is a classical planning language, representing plan components as states, goals, and 

actions, allowing algorithms to parse the logical structure of the planning problem to provide a 

solution. 

In STRIPS, state is represented as a conjunction of positive literals.  Positive literals may be a 

propositional literal (e.g., Big ^ Tall) or a first-order literal (e.g., At(Billy, Desk)).  The positive 

literals must be grounded – may not contain a variable (e.g., At(x, Desk)) – and must be 

function-free – may not invoke a function to calculate a value (e.g., At(Father(Billy), Desk)).  

Any state conditions that are not mentioned are assumed false. 

The goal is also represented as a conjunction of positive, ground literals.  A state satisfies a goal 

if the state contains all of the conjuncted literals in the goal; e.g., Stacked ^ Ordered ^ Purchased 

satisfies Ordered ^ Stacked. 

Actions (or operators) are defined by action schemas, each consisting of three parts: 

 The action name and any parameters. 

 Preconditions which must hold before the action can be executed.  Preconditions are 

represented as a conjunction of function-free, positive literals.  Any variables in a 

precondition must appear in the action‟s parameter list. 

 Effects which describe how the state of the environment changes when the action is 

executed.  Effects are represented as a conjunction of function-free literals.  Any 

http://en.wikipedia.org/wiki/Logical_conjunction
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variables in a precondition must appear in the action‟s parameter list.  Any world state 

not explicitly impacted by the action schema‟s effect is assumed to remain unchanged. 

The following, simple action schema describes the action of moving a box from location x to 

location y: 

Action: MoveBox(x, y) 

Precond: BoxAt(x) 

Effect: BoxAt(y), ¬ BoxAt(x) 

If an action is applied, but the current state of the system does not meet the necessary 

preconditions, then the action has no effect.  But if an action is successfully applied, then any 

positive literals, in the effect, are added to the current state of the world; correspondingly, any 

negative literals, in the effect, result in the removal of the corresponding positive literals from the 

state of the world. 

For example, in the action schema above, the effect would result in the proposition BoxAt(y) 

being added to the known state of the world, while BoxAt(x) would be removed from the known 

state of the world.  (Recall that state only includes positive literals, so a negation effect results in 

the removal of positive literals.)  Note also that positive effects can not get duplicated in state; 

likewise, a negative of a proposition that is not currently in state is simply ignored.  For example, 

if Open(x) was not previously part of the state, ¬ Open(x) would have no effect. 

A STRIPS problem includes the complete (but relevant) initial state of the world, the goal 

state(s), and action schemas.  A STRIPS algorithm should then be able to accept such a problem, 

returning a solution.  The solution is simply an action sequence that, when applied to the initial 

state, results in a state which satisfies the goal. 

4.2.1 STRIPS Planning Algorithm 

As previously referenced, STRIPS began as an automated planning algorithm and has double-

meaning to describe the language (described above) used to provide input to that algorithm.  

While the algorithm does not scale well to real-world problems, it, like the language, serves as a 

foundational starting point to developing and understanding more powerful automated planning 

algorithms.  The STRIPS algorithm [3] is found below, followed by a brief commentary: 

STRIPS(A, s, g) 

p = empty plan 

loop… 

if s satisfies g then return p 

a = [an applicable action in A, relevant for g] 

if a = null, then return failure 

p’ = STRIPS(A, s, precond(a)) 

if p’ = failure, then return failure 

s = apply p’ to s 
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s = apply a to s 

p = p + p’ + a 

In the above STRIPS algorithm, A represents all of the possible, grounded actions (i.e., action 

schemas with variables replaced with values), while s is the current state, and g is the goal state. 

Critically important to note is that this algorithm is a backward-search algorithm.  In other 

words, the goal state of the planning problem is fed into the algorithm as s, while the initial state 

of the planning problem is provided as g.  The returned solution, if any, simply needs to be 

reversed to provide the solution to the planning problem.  Simply put, it works backwards from 

the goal to figure out a logical path to get there. 

4.3 Explanation 

Most expert systems have explanation facilities that allow the user to ask questions- why and 

how it reached some conclusion 

The questions are answered by referring to the system goals, the rules being used, and existing 

problem solving. The rules typically reflect empirical or “compiled” knowledge. They are codes 

of an expert‟s rule of thumb, not the expert‟s deeper understanding. 

Example: 

Dialog with an expert system designed to give advice on car problems. 

System  Does the car start? 

User  No. 

System  Does the engine turn over? 

User  yes 

System  Do you smell gas? 

User  yes 

System  Recommendation-wait 5 minutes and try again. 

User  Why? 

System  I used the rule: 

  If not start, and engine_turn_over, and smell_gas 

  Then recommendation is „wait 5 minutes and try again‟ 
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User 

Note: The rule gives the correct advice for a flooded car. And knows the questions to be ask to 

determine if the car is flooded, but it does not contain the knowledge of what a flooded car is and 

why waiting will help. 

Types of Explanation 

There are four types of explanations commonly used in expert systems. 

 Rule trace reports on the progress of a consultation; 

 Explanation of how the system reached to the give conclusion; 

 Explanation of why the system did not give any conclusion. 

 Explanation of why the system is asking a question; 

 

4.4 Learning 

Machine Learning 

 Like human learning from past experiences,a computer does not have “experiences”. 

 A computer system learns from data, which represent some “past experiences” of an 

application domain.  

 Objective of machine learning : learn a target function that can be used to predict the 

values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low 

risk.  

 The task is commonly called: Supervised learning, classification, or inductive learning 

Supervised Learning 

Supervised learning is a machine learning technique for learning a function from training data. 

The training data consist of pairs of input objects (typically vectors), and desired outputs. The 

output of the function can be a continuous value (called regression), or can predict a class label 

of the input object (called classification). The task of the supervised learner is to predict the 

value of the function for any valid input object after having seen a number of training examples 

(i.e. pairs of input and target output). To achieve this, the learner has to generalize from the 

presented data to unseen situations in a "reasonable" way. 
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Another term for supervised learning is classification. Classifier performance depend greatly on 

the characteristics of the data to be classified. There is no single classifier that works best on all 

given problems. Determining a suitable classifier for a given problem is however still more an art 

than a science. The most widely used classifiers are the Neural Network (Multi-layer 

Perceptron), Support Vector Machines, k-Nearest Neighbors, Gaussian Mixture Model, 

Gaussian, Naive Bayes, Decision Tree and RBF classifiers. 

 Supervised learning process: two steps 

 Learning (training): Learn a model using the training data 

 Testing: Test the model using unseen test data to assess the model accuracy 

 

 

 

 

Supervised vs. unsupervised Learning 

 Supervised learning:  

      classification is seen as supervised learning from examples.  

 Supervision: The data (observations, measurements, etc.) are labeled with pre-

defined classes. It is like that a “teacher” gives the classes (supervision).  

 Test data are classified into these classes too.  

 Unsupervised learning (clustering) 

 Class labels of the data are unknown 

 Given a set of data, the task is to establish the existence of classes or clusters in 

the data 

Decision Tree 

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
Accuracy
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 A decision tree takes as input an object or situation described by a set of attributes and 

returns a “decision” – the predicted output value for the input. 

 A decision tree reaches its decision by performing a sequence of tests. 

Example :  “HOW TO” manuals (for car repair) 

A decision tree reaches its decision by performing a sequence of tests. Each internal node in the 

tree corresponds to a test of the value of one of the properties, and the branches from the node 

are labeled with the possible values of the test. Each leaf node in the tree specifies the value to be 

returned if that leaf is reached. The decision tree representation seems to be very natural for 

humans; indeed, many "How To" manuals (e.g., for car repair) are written entirely as a single 

decision tree stretching over hundreds of pages. 

A somewhat simpler example is provided by the problem of whether to wait for a table at a 

restaurant. The aim here is to learn a definition for the goal predicate Will Wait. In setting this up 

as a learning problem, we first have to state what attributes are available to describe examples in 

the domain. we will see how to automate this task; for now, let's suppose we decide on the 

following list of attributes: 

1. Alternate: whether there is a suitable alternative restaurant nearby. 

2. Bar: whether the restaurant has a comfortable bar area to wait in. 

3. Fri/Sat: true on Fridays and Saturdays. 

4. Hungry: whether we are hungry. 

5. Patrons: how many people are in the restaurant (values are None, Some, and Full). 

6. Price: the restaurant's price range ($, $$, $$$). 

7. Raining: whether it is raining outside. 

8. Reservation: whether we made a reservation. 

9. Type: the kind of restaurant (French, Italian, Thai, or burger). 

10. Wait Estimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). 
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Decision tree induction from examples 

An example for a Boolean decision tree consists of a vector of' input attributes, X, and a single 

Boolean output value y. A set of examples (X1,Y1) . . . , (X2, y2) is shown in Figure. The 

positive examples are the ones in which the goal Will Wait is true (XI, X3, . . .); the negative 

examples are the ones in which it is false (X2, X5, . . .). The complete set of examples  is called 

the training set. 

 

Decision Tree Algorithm 

The basic idea behind the Decision-Tree-Learning-Algorithm is to test the most important 

attribute first. By "most important," we mean the one that makes the most difference to the 

classification of an example. That way, we hope to get to the correct classification with a small 

number of tests, meaning that all paths in the tree will be short and the tree as a whole will be 

small. 
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Reinforcement Learning 

 Learning what to do to maximize reward 

 Learner is not given training 

 Only feedback is in terms of reward 

 Try things out and see what the reward is 

 Different from Supervised Learning 

 Teacher gives training examples 

Examples 

 Robotics: Quadruped Gait Control, Ball Acquisition (Robocup) 

 Control: Helicopters 

 Operations Research: Pricing, Routing, Scheduling 

 Game Playing: Backgammon, Solitaire, Chess, Checkers 

 Human Computer Interaction: Spoken Dialogue Systems 

 Economics/Finance: Trading 

Markov decision process VS Reinforcement Learning 

 Markov decision process 
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 Set of state S, set of actions A 

 Transition probabilities to next states T(s, a, a‟) 

 Reward functions R(s) 

 RL is based on MDPs, but 

 Transition model is not known 

 Reward model is not known 

 MDP computes an optimal policy 

 RL learns an optimal policy 

 

Types of Reinforcement Learning 

 Passive Vs Active 

 Passive: Agent executes a fixed policy and evaluates it 

 Active: Agents updates policy as it learns 

 Model based Vs Model free 

 Model-based: Learn transition and reward model, use it to get optimal policy 

 Model free: Derive optimal policy without learning the model 

Passive Learning 

 

 Evaluate how good a policy π is 

 Learn the utility U
π
(s) of each state 

 Same as policy evaluation for known transition & reward models 
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Agent executes a sequence of trials: 

(1, 1) → (1, 2) → (1, 3) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (4, 3)+1 

(1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (3, 2) → (3, 3) → (4, 3)+1 

(1, 1) → (2, 1) → (3, 1) → (3, 2) → (4, 2)−1 

 

Goal is to learn the expected utility Uπ(s) 

 

 

Direct Utility Estimation 

 Reduction to inductive learning 

 Compute the empirical value of each state 

 Each trial gives a sample value 

 Estimate the utility based on the sample values 

 Example: First trial gives 

 State (1,1): A sample of reward 0.72 

 State (1,2): Two samples of reward 0.76 and 0.84 

 State (1,3): Two samples of reward 0.80 and 0.88 

 Estimate can be a running average of sample values 

 Example: U(1, 1) = 0.72,U(1, 2) = 0.80,U(1, 3) = 0.84, . . . 

 Ignores a very important source of information 
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 The utility of states satisfy the Bellman equations 

 

 Search is in a hypothesis space for U much larger than needed 

 Convergence is very slow 

 Make use of Bellman equations to get U
π
(s) 

 Need to estimate T(s, π(s), s‟) and R(s) from trials 

 Plug-in learnt transition and reward in the Bellman equations 

 Solving for U
π
: System of n linear equations 

 Estimates of T and R keep changing 

 Make use of modified policy iteration idea 

 Run few rounds of value iteration 

 Initialize value iteration from previous utilities 

 Converges fast since T and R changes are small 

 ADP is a standard baseline to test „smarter‟ ideas 

 ADP is inefficient if state space is large 

 Has to solve a linear system in the size of the state space 

 Backgammon: 10
50

 linear equations in 10
50

 unknowns 

Temporal Difference Learning 

 Best of both worlds 

 Only update states that are directly affected 

 Approximately satisfy the Bellman equations 

 Example: 

(1, 1) → (1, 2) → (1, 3) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (4, 3)+1 

(1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3) → (3, 2) → (3, 3) → (4, 3)+1 
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(1, 1) → (2, 1) → (3, 1) → (3, 2) → (4, 2)−1 

 After the first trial, U(1, 3) = 0.84,U(2, 3) = 0.92 

 Consider the transition (1, 3) → (2, 3) in the second trial 

 If deterministic, then U(1, 3) = −0.04 + U(2, 3) 

 How to account for probabilistic transitions (without a model) 

 TD chooses a middle ground 

 

 Temporal difference (TD) equation, α is the learning rate 

 The TD equation 

 

 TD applies a correction to approach the Bellman equations 

 The update for s‟ will occur T(s, π(s), s‟) fraction of the time 

 The correction happens proportional to the probabilities 

 Over trials, the correction is same as the expectation 

 Learning rate α determines convergence to true utility 

 Decrease αs proportional to the number of state visits 

 Convergence is guaranteed if 

 

 Decay αs (m) = 1/m satisfies the condition 

 TD is model free 

TD Vs ADP 

 TD is mode free as opposed to ADP which is model based 

 TD updates observed successor rather than all successors 
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 The difference disappears with large number of trials 

 TD is slower in convergence, but much simpler computation per observation 

Active Learning 

 Agent updates policy as it learns 

 Goal is to learn the optimal policy 

 Learning using the passive ADP agent 

 Estimate the model R(s),T(s, a, s‟) from observations 

 The optimal utility and action satisfies 

 

 Solve using value iteration or policy iteration 

 

 Agent has “optimal” action 

 Simply execute the “optimal” action 

Exploitation vs Exploration 

 The passive approach gives a greedy agent 

 Exactly executes the recipe for solving MDPs 

 Rarely converges to the optimal utility and policy 

 The learned model is different from the true environment 

 Trade-off 

 Exploitation: Maximize rewards using current estimates 

 Agent stops learning and starts executing policy 

 Exploration: Maximize long term rewards 

 Agent keeps learning by trying out new things 

 Pure Exploitation 
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 Mostly gets stuck in bad policies 

 Pure Exploration 

 Gets better models by learning 

 Small rewards due to exploration 

 The multi-armed bandit setting 

 A slot machine has one lever, a one-armed bandit 

 n-armed bandit has n levers 

 Which arm to pull? 

 Exploit: The one with the best pay-off so far 

 Explore: The one that has not been tried 

 

 

Exploration 

 Greedy in the limit of infinite exploration (GLIE) 

 Reasonable schemes for trade off 

 Revisiting the greedy ADP approach 

 Agent must try each action infinitely often 

 Rules out chance of missing a good action 

 Eventually must become greedy to get rewards 

 Simple GLIE 

 Choose random action 1/t fraction of the time 

 Use greedy policy otherwise 

 Converges to the optimal policy 

 Convergence is very slow 
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Exploration Function 

 A smarter GLIE 

 Give higher weights to actions not tried very often 

 Give lower weights to low utility actions 

 Alter Bellman equations using optimistic utilities U
+
(s) 

 

 The exploration function f (u, n) 

 Should increase with expected utility u 

 Should decrease with number of tries n 

 A simple exploration function 

 

 Actions towards unexplored regions are encouraged 

 Fast convergence to almost optimal policy in practice 

Q-Learning 

 Exploration function gives a active ADP agent 

 A corresponding TD agent can be constructed 

 Surprisingly, the TD update can remain the same 

 Converges to the optimal policy as active ADP 

 Slower than ADP in practice 

 Q-learning learns an action-value function Q(a; s) 

 Utility values U(s) = maxa Q(a; s) 

 A model-free TD method 

 No model for learning or action selection 
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 Constraint equations for Q-values at equilibrium 

 

 Can be updated using a model for T(s; a; s‟) 

 The TD Q-learning does not require a model 

 

 Calculated whenever a in s leads to s‟ 

 The next action anext = argmaxa‟ f (Q(a‟; s‟);N(s‟; a‟)) 

 Q-learning is slower than ADP 

 Trade-o: Model-free vs knowledge-based methods 

 

 

 

PART- A 

1. What are the components of planning system? 

2. What is planning? 

3. What is nonlinear plan? 

4. List out the 3 types of machine learning? 

5. What is Reinforcement Learning?  

6. What do you mean by goal stack planning? 

7. Define machine learning. 

8. What are the types of Reinforcement Learning. 

PART B 

1. Briefly explain the advanced plan generation systems. 
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2. Explain Machine Learning. 

3. Explain STRIPS. 

4. Explain Reinforcement Learning. 

5. Briefly explain Partial Order Plan. 

6. Explain in detail about various Machine learning methods. 


